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1. Introduction

Contemporary cognitive science is motivated by the thought that mental activity is,
in some sense—possibly a literal one—computational. It is a traditional complaint
against this view that computers cannot be creative since they are merely rule-
governed devices. The argument is heard less often than it used to be, since AI has
got computers to do things that seem pretty creative (such as managing investment -
portfolios and organising wars); but it is unlikely to disappear whilst the nature of
human creativity is not understood. Notwithstanding any of this, I think that the
argument is pretty worthless as it stands: the notion of creativity is so vague that
it is not at all clear what is being claimed when it is said that computers cannot be
creative, and so not clear whether or not this is true. If the argument is to be worth
discussing, there must, therefore, be some way of making it much more precise.

This might be attempted in many ways, by focusing on various kinds of, or topics
of, creativity. One approach that offers some hope is to focus on the creativity
involved in establishing new mathematical results. This is not because this is
a particularly creative activity. Rather, it is because we have a reasonably well
articulated understanding of what proof in mathematics is, and of what its properties
are. An argument on just these lines was, in fact, given by J. R. Lucas in 1961 in
a now (in)famous paper (Lucas, 1961). There, he argued on the basis of Godel’s
Incompleteness Theorem that a mind will always be able to prove mathematical
results that a machine cannot. Over the last 30 years the paper has occasioned
a considerable literature,’ mainly critical; and one might have thought the issue
closed. But at the Turing conference at the University of Sussex in 1990 in a paper
entitled ‘Minds, Machines and G&del: a retrospect’ Lucas still stoutly defended
his argument against the literature. Moreover, Roger Penrose (1989) has recycled
the argument as the dialectical centre-piece of his book The Emperor’s New Mind,
which has stirred up the hornet’s nest of critics again.? Since the argument has
refused to lie down and die quietly, I think it worth thinking through it again from
first principles. That is the purpose of this paper.

I will start with what I take to be a fair statement of Lucas’ argument; I will then
evaluate it. In the process, this will require a number of important clarifications, in
particular, of what it is to give a proof. Both the original paper and many subsequent
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discussions are flawed by confusions concerning this notion. I do not intend this to
be a scholarly paper, and so will not discuss the large literature. In fact, many of the
standard objections to the argument can be seen to fail, or to be beside the point,
once the argument is spelled out carefully. On the other hand, I make no claim to
originality for a number of the points I shall make. What originality this paper has,
it seems to me, is in spelling out the argument more clearly than is commonly done,
with the attendant benefits of this.

2. Lucas’ argument

So, what is Lucas’ argument? It can be put very simply as follows. Take any mind,
M, and computer, C:

There is a mathematical truth of which C cannot give a proof
but of which M can. ‘
Hence M is not C.

The argument is an instance of the indiscernibility of identicals (or rather, its
converse, the difference of discernibles), and whilst one might have certain doubts
about the unrestricted validity of this form of argument when the discerning property
is intensional, these are of no concern here: the property of having the ability to do
so and so is quite extensional. Hence there is no problem about the validity of the
argument, and any problem must reside in the premise.

Is this true? Well, obviously not. The minds of dogs, newborn babes and math-
ematical illiterates cannot give any kind of mathematical proof. Of course, Lucas
never meant his argument to apply to any mind. He has in mind, here, a mind of rea-
sonable mathematical sophistication. So let us assume henceforth that M is of this
kind, whilst noting that, if the argument works, mathematicians are not computers,
but the rest of you still may be.

3. Output and ability

Given that M is a mind of this kind, why should we suppose the premise to be
true? The answer is that it is supposed to follow from an application of Gddel’s
Theorem. We will look at the details in a moment, but first there is the preliminary
question of how, given M and C, we are to decide what they can and cannot do.
(Note that we cannot simply replace ‘can’ with ‘does’ in the argument, since there
is no reason to suppose that M will actually prove the statement.) Fortunately we do
not need to address the issue as far as M is concerned, but for C there is no escaping
the question. The strategy adopted by Lucas is never spelled out very clearly, but
in effect, I take it, it comes to this. We suppose C set in motion and demonstrate
that the proof of the formula in question will not be given (or, if the machine is
non-deterministic, will never be given whichever of the non-determined paths is
followed); we conclude from this that C cannot give a proof of the formula.
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There are two points that should be made about this strategy straight away. The
first is that what is actually given as output by a computer depends, of course, on
its input (in the case of a Turing Machine, the initial state of the tape). Hence,
in the context of the argument, ‘computer’ should be taken to mean ‘device +
input’; and what the argument proves, if it works, is therefore that there is no
machine-with-input that is identical to M.

The second point concerns the fact that the argument moves from what the
machine doesn’t do, to what it can’t do. If it were a person that were in question
here the inference would be hotly contested by compatibilists (soft determinists).
Philosophers of this stripe point out that the fact that someone does not do something
does not entail that they cannot (i.e. that they do not have the ability), and argue
that this is so even if it is, in fact, determined that they do not do it. Since what is
at issue here is whether computers may be minds, can we not make out the same
case for C?

There are two possible strategies for reply here. The first is to confront the argu-
ments for compatibilism head on. The second is to argue that even if compatibilism
is true in general, there is something specific about the computer case which rules
it out: the machine is, after all, doing everything it can. I do not think it appropriate
to take up the first strategy here; and I do not know how to pursue the second
successfully. So I intend to leave the issue there, assume that in this case cannot
follows from does not, and simply note the weak point of the argument.

4. Godel’s theorem

We must now address the central question of what the formula is, of which C,
supposedly, never gives a proof but of which M can. This is to be delivered by an
application of G6del’s famous Incompleteness Theorem, although how, never gets
spelled out very carefully. Let us start with Gddel’s Theorem itself. Statements of
this come in various shapes and sizes. The relevant one in the present context is as

follows.2

Let T be an axiomatic theory that can represent all recursive functions. Then
there is a formula, ¢, such that (i) if T is consistent ¢ is not in T and (ii) if the
axioms and rules of T are intuitively correct, we can establish ¢ to be true by
an intuitively correct argument.

The statement of the theorem contains various technical notions. To understand
the discussion it is not necessary to have a complete grip on them, but it is necessary
to have a reasonable understanding, so I will spend a little time explaining them.

A theory is a set of sentences of some (formal) language. In the case in question
we must suppose the language to be a language with numerals, function symbols
or predicates for addition, multiplication, etc. To be a theory the set must be closed

® I take it essentially from Priest (1987, chapter 3); a proof of the theorem in this form can also be
found there.
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under deducibility. That is, any logical consequence of its members must also be
a member. It is pertinent to inquire what notion of deducibility is in question here.
In fact, it is sufficient to assume that it validates little more than modus ponens,
substitutivity of identicals and some simple quantifier inferences.

To say that the theory can represent all recursive functions is to say that certain
arithmetic facts are in the theory. It suffices, as' Gdel showed, to suppose that the
theory contains statements of the basic properties of addition and multiplication.

To say that the theory is axiomatic is to say that there is a decidable set of axioms
such that the members of the theory are exactly the logical consequences of the
axioms. If this is true then the members of the set can be effectively generated (by
applying the rules systematically to the axioms). In the jargon of recursion theory,
they are recursively enumerable (re). Conversely, as Craig’s Theorem shows, any
theory that is recursively enumerable has a decidable set of axioms, and is therefore
axiomatic. Hence, being axiomatic and being recursively enumerable are the same
thing.

5. ... and computers

Godel’s theorem tells us that under certain conditions a true formula is not provable
in a certain theory. But this does not yet give us what is required. We need a formula
for which C cannot give a proof. How do we get this? Lucas hoped to obtain this
in virtue of the close connection between computations and axiom systems.

Let us take some computational device, say a Turing Machine (though in virtue
of Church’s Thesis, essentially the same points will hold of any computational
device). We can think of a computational state as a pair comprising the non-blank
part of the tape (with the square being scanned marked in some way) and the
machine state. Starting from some initial state, the computational state is modified
by the application of certain effective rules to generate a potentially infinite set
of states. By their nature the set of states generated is re. Or, to be slightly more
precise, if we were to code the states arithmetically, the set of codes would be re.*

It should be noted that the existence of connectionist machines casts some doubt
on this conclusion. Provided such a machine is set up as a discrete state system, as
they normally are (and indeed, must be, if they are to be implemented on standard
machines) then the conclusion holds. In theory, at least, however, they could be
set up as analog machines, with outputs being continuous functions of inputs over
real-valued time. In this case, there is no reason to suppose that the sequence of
output states is re. Indeed, it is not even clear what this would mean anymore. Such
a possibility therefore poses a very radical challenge to Lucas’ argument. However,
an analog notion of computation might threaten Church’s Thesis itself, and would
therefore occasion a radically novel situation that I do not wish to go into here.

* If the device is a non-deterministic Turing Machine then there is no reason why the set of actual
states generated is re. But in this case we consider a suitable deterministic Turing Machine that
generates all the possible states of the non-deterministic machine in some systematic order.
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Leaving this issue aside, we can conclude that the set of computational states is
re. But we cannot apply anything like G&del’s Theorem yet. To do this we need to
know about what proofs the machine can give, that is, to look at its output. So let us
suppose that the machine is hooked up to some output device. For want of a better
word, let us call this a mouth. We can suppose that every time the machine state
takes (a) certain determined value(s) some part of the tape which can be effectively
determined is output through the mouth. The sequence of outputs can be effectively
culled from an re set, and so is re too.

Now, of these outputs some will be proofs. Let the set of theorems of which
these are the proofs be T. We are at last in a position to see whether we can apply
Godel’s Theorem to this T. First, let us consider whether the general conditions are
satisfied. That is, can T represent all recursive functions; is it deductively closed;

and is it re?

6. Representability and deductive closure

Is there, for a start, any reason to suppose that T can represent all recursive functions?
For all we have said so far, of course not. Recall, however, that we are in the process
of attempting to show that Cis not M, where M is a mind of reasonable mathematical
sophistication. Now a mind of such sophistication can clearly establish the basic
properties of addition and multiplication. Hence, if C cannot do the same it is not
M. We may therefore suppose, without loss of generality, that T can represent all
recursive functions.

Next, we turn to deductive closure. Is T deductively closed? Again, for all we
have said so far, no. We can argue, as before, however, that we can restrict ourselves
to the case where T is deductively closed: the set of theorems that M can establish
is deductively closed, and so if T is not deductively closed C is not M. It might
be doubted that the set of theorems a mind can establish is deductively closed.
The set of theorems any human mind will establish is, of course, finite, and so not
deductively closed. But the set of theorems a human mind can establish would seem
deductively closed, at least in principle: for example, if a mind can establish « and
o — (3 then it can establish 3. The principle is that the mind is given sufficient
time and secondary memory space—which is a principle we also have to apply to
the computer, of course.

7. Recursive enumerability

Finally let us turn to the crucial question of whether T is re. The output of C is re.
To get at T we need to disentangle the set of things given as proofs from the rest
of the output, and then extract T from this. For T to be re both of these procedures
“must be effective. If they are not, there is no reason why T should itself be re. Anre
set—such as the natural numbers—can have non-re subsets—e.g. the set of codes

of true arithmetical statements.



112 : GRAHAM PRIEST

Let us start with the question of whether we can effectively disentangle proofs
from the rest of the output. To answer this we have to address the question of what,
exactly, it is to give a proof. In fact, a number of things might be meant by this. Let
us consider them in turn, and see whether any of them will do what is required.

First, the obvious sense in which M can give a proof is an intensional one.
M produces a statement with the intention that it be understood in a certain way,
namely as establishing a certain mathematical statement as true. Now, it is not clear
that a computer can have intensional states in the same way. But someone who
denied this would have a much more fundamental objection against the identity of
M and C. So suppose that it can. Is there an effective procedure for telling when
the output of the computer is being given as a proof in this sense? Clearly not;
the computer might not be giving a proof at all: it might be joking, lying or just
doodling. And there is certainly no effective procedure for ruling out these cases. If
this is what is meant by giving a proof the argument therefore folds here.

Alternatively, we might interpret the notion of giving a proof simply as the
- outputting of a proof (whatever intention—if any—is behind it). After all, M does
this too. But in this case the output (which might just be a sequence of 1s and 0s)
has no intrinsic meaning at all; neither, therefore, does the question of how one
can recognise a proof in the output. Such a question makes sense only relative to
some scheme for decoding the output. We can get around this problem as follows.
M will, presumably, speak some language and so can give a proof of the formula in
question in that language, or even in some canonical part of it, say a certain formal
language, L. If C cannot even output strings which are, syntactically, sentences of
L then it cannot do what M does. Hence C is not M. Thus, we may restrict our
attention to the case where C outputs sentences of L, and take the decoding scheme
to be the normal semantics of L. Can we now effectively recognise a proof in L
when one is output? This depends on still further disambiguations.

A proof is a deductive argument; but obviously not all deductively valid argu-
ments are proofs (0 = 1; hence 1 = 0). Suppose we take a proof to be a sound
deductive argument, i.e. a valid argument with true premises. In this case there is
no way that recognition of a proof can be effective. For even assuming that the
questionof whether or not an inference is valid is decidable, the question of whether
or not a premise is true is certainly not. Hence, again, if we use this notion of proof
the argument folds. ’

A final sense of the notion of proof (and the only one that, as far as I can
see, is capable of advancing the argument further) is that according to which a
proof is a sequence of statements that appears to us (or, rather to an L speaker,
say M) to be sound. This, plausibly, can be recognised effectively. Henceforth I
shall interpret proof (and cognate notions such as consistency) in this way. We
may now take it that the set of proofs is re. Assuming that L is such that we can
effectively determine the theorem from the proof, T is re too. The assumption is
not toothless. It rules out referring to the conclusions by names such as ‘Euclid’s
Prime Theorem’. But provided we take it, as we may, that all statements are spelled
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out (e.g. Vz € Ny € N(y > z A prime(y))), and not just named, the assumption
is satisfied.

8. Consistency

Having seen that the general conditions of G6del’s Theorem are satisfied on one
(and only one) understanding of proof, we must now see whether the particular
conditions for parts (i) and (ii) of it are satisfied (on the same understanding).
Let us take things in that order. To establish that ¢ is not provable, we need to
establish that T is consistent. Is there any reasons to suppose so? Clearly not. Nor
will it help to argue that we can restrict ourselves to those computers where T is
consistent, on the grounds that an inconsistent machine cannot be M. Real minds
are frequently inconsistent in the sense of providing proofs of inconsistent things.
Most people have produced a proof that 0=1 when doing elementary algebra; and
nearly everybody has applied the algorithm for adding two numbers (which is a
proof of sorts) and got the wrong answer.

Are there any avenues of repair here? One argument Lucas uses in h1s original
paper is that if T is deductively closed and inconsistent then it contains a proof of
everything; and therefore C cannot be M because people, even if inconsistent, do not
offer proofs of everything. This reply, however, will not work. There is no reason
to suppose that the logic in question is explosive. It may well be paraconsistent; in
which case triviality does not follow from inconsistency. (As I observed, to prove
Gddel’s Theorem, we need to make very few assumptions about what the logic in
question is.)

Another move that Lucas makes in his original paper is to argue that although
people may be inconsistent, they are not essentially so, in the sense that when they
discover that they have proved inconsistent things they will take back at least one
of the proofs. However, this does not really help, since there is no reason to suppose
that C may not be essentially consistent in the same sense. It might be suggested
that we grant this, but take for T the set of all those theorems that are proved
and never taken back, which is consistent. Whether or not this is so, the argument
now collapses. Even granting that taking back is something that can be effectively
recognised when it occurs, there is no effective way of telling when a theorem is
going to be taken back. There is therefore no longer any reason to suppose that T
is re.

The only way, it seems to me, that offers any hope of getting T to be consistent
is to suppose that M (and so any C which is supposed to be M) is not only a
mathematical mind but an ideal mathematical mind, that never makes mistakes of
any kind: either of memory, inference, judgment or output. But this is sufficient to
destroy the argument. After all, the only candidate for a mind of this kind is God’s.
So at best, we have a (theo)logical proof that God is not a computer.

But I am skeptical of even this repair. I doubt that even the ideal mathematical
mind is (mathematically) consistent. Simple Peano Arithmetic may be consistent
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(we hope); but once one passes beyond these bounds contradictions are wont to
arise. Take Berry’s Paradox, for example. There is only a finite number of numerical
descriptions of some preassigned length, say 100 words. Hence there must be
numbers that are not so described. In particulaf, the least such is not so described.
But we have just so described it. This and many similar logical paradoxes threaten
consistency even for an ideal mind.

It might be replied that there is something wrong with this proof. I do not think
this is the case, though I shall not enter into the discussion here. Let me just say
that if there is, we have not yet found it (at least to most people’s satisfaction).
Alternatively, it might be argued that the phenomenon of logical paradoxes is
irrelevant in the present context since we may take L to be non-self-referential.
Nothing, however, could be further from the truth. The proof of G6del’s Theorem
makes notorious use of self-reference. Indeed, the very theorem that is claimed to
be unprovable is, intuitively, a logical paradox. Roughly, the sentence in question,
o, says of itself that it is not provable. Now suppose that it is false. Then it is
provable, and so true. Hence it is true, and so unprovable. But we have just proved
this; hence it is provable. Thus, it would seem, we cannot apply G6édel’s Theorem
to infer that ¢ is unprovable, since the theory in question is inconsistent; and the
inconsistency is precisely ¢ A —¢.® In any case, there is therefore no hope of trying
to argue that the logical paradoxes are an irrelevant phenomenon that may be safely

cordoned off.

9. The mathematician’s proof

Next, and finally, we can turn to the question of whether ¢ is indeed provable by M,
in other words, whether part (ii) of the theorem can be applied. In order for this to be
so we require that the axioms and rules of T be intuitively correct. Are they? First,
what are they?° With a bit of rational reconstruction, we can always suppose that
the sole rule of inference is modus ponens, which is certainly intuitively correct.
What of the axioms? Given any proof in L that C comes up with we can effectively
pick out its ultimate premises, just as we picked out its ultimate conclusion. By our
assumption of what a proof is, each ultimate premise is intuitively correct. This
does not quite give us what we want, however. Since the collection of proofs is re,
the collection of ultimate premises is re, but need not be decidable, and so need
not be a decidable set of axioms for T. However, Craig’s Theorem (Craig, 1953)
shows us how to construct a decidable and logically equivalent set. If « is the nth
member of the enumeration, we simply take a A ... A a (with n conjuncts) as an
axiom. Clearly, if « is intuitively correct, so is this. So T does have a set of axioms

5 For a further discussion of all these issues see Priest, 1987.

6 It is sometimes suggested that Lucas, J. R.” argument fails since M may not be able to determine
what the axioms of T are, and so may not be able to ‘formulate its own Godel sentence’, . This is
an ignoratio. It is sufficient for the argument that ¢ exists; it is not necessary that M can determine
that ¢ is the Godel sentence in question. )
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all of which are intuitively correct, and we can apply the second part of Gédel’s
Theorem to establish that « is provable by M.”

10. Conclusion

We have now considered the whole of Lucas’ argument. By carefully spelling it out
and trimming it we have seen how a number of its problems can be avoided. But,
as we have also seen, in the last analysis it fails: however one spells out the notion
of proof concerned, the argument breaks down somewhere. Machine creativity
breathes again.
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" It is sometimes argued that M may not be able to establish ¢ on the ground that M may not be
able to establish that T is sound. (Usually, the point is put in terms of consistency since people fail
to distinguish between these notions.) However, if T is defined in the way required for the rest of the
argument to work (as the set of theorems whose proofs are intuitively cotrect), the soundness of T
can be established in an intuitively correct way quite trivially, as follows: all the axioms are true, all
the rules of inference are valid; so (by recursion) all the theorems are true.



